基本放大电路实验报告总结

2024-05-04 17:55

1. 基本放大电路实验报告总结

 基本放大电路实验报告总结
                    基本放大电路实验报告总结,很多人在生活中都会充满好奇心,对所有东西都很好奇或者是不解,那么大家都知道基本放大电路实验报告总结是怎么写吗,下面和我一起来了解学习看看吧。
  基本放大电路实验报告总结1  1.理解多级直接耦合放大电路的工作原理与设计方法
  2.熟悉并熟悉设计高增益的多级直接耦合放大电路的方法
  3.掌握多级放大器性能指标的测试方法
  4.掌握在放大电路中引入负反馈的方法
   二、实验预习与思考 
  1.多级放大电路的耦合方式有哪些?分别有什么特点?
  2.采用直接偶尔方式,每级放大器的工作点会逐渐提高,最终导致电路无法正常工作,如何从电路结构上解决这个问题?
  3.设计任务和要求
   (1)基本要求 
  用给定的三极管2SC1815(NPN),2SA1015(PNP)设计多级放大器,已知VCC=+12V, -VEE=-12V,要求设计差分放大器恒流源的射极电流IEQ3=1~1.5mA,第二级放大射极电流IEQ4=2~3mA;差分放大器的单端输入单端输出不是真电压增益至少大于10倍,主放大器的不失真电压增益不小于100倍;双端输入电阻大于10kΩ,输出电阻小于10Ω,并保证输入级和输出级的直流点位为零。设计并仿真实现。
   三、实验原理 
  直耦式多级放大电路的主要涉及任务是模仿运算放大器OP07的等效内部结构,简化部分电路,采用差分输入,共射放大,互补输出等结构形式,设计出一个电压增益足够高的多级放大器,可对小信号进行不失真的放大。
   1.输入级 
  电路的输入级是采用NPN型晶体管的恒流源式差动放大电路。差动放大电路在直流放大中零点漂移很小,它常用作多级直流放大电路的前置级,用以放大微笑的直流信号或交流信号。
  典型的差动放大电路采用的工作组态是双端输入,双端输出。放大电路两边对称,两晶体管型号、特性一致,各对应电阻阻值相同,电路的共模抑制比很高,利于抗干扰。 该电路作为多级放大电路的输入级时,采用vi1单端输入,uo1的单端输出的工作组态。 计算静态工作点:差动放大电路的双端是对称的,此处令T1,T2的相关射级、集电极电流参数为IEQ1=IEQ2=IEQ,ICQ1=ICQ2=ICQ。设UB1=UB2≈0V,则Ue≈-Uon,算出T3的ICQ3,即为2倍的IEQ也等于2倍的ICQ。
  此处射级采用了工作点稳定电路构成的恒流源电路,此处有个较为简单的确定工作点的方法:
  因为IC3≈IE3,所以只要确定了IE3就可以了,而IE3 UR4UE3 ( VEE), R4R4
  UE3 UB3 Uon (VCC ( VEE)) R5 Uon R5 R6
  uo1 ui1采用ui1单端输入,uo1单端输出时的增益Au1
  2.主放大级 (Rc//RLRL (P//)1  Rb rbeR1 rbe
  本级放大器采用一级PNP管的共射放大电路。由于本实验电路是采用直接耦合,各级的工作点互相有影响。前级的差分放大电路用的是NPN型晶体管,输出端uo1处的集电极电压Uc1已经被抬得较高,同时也是第二级放大级的'基极直流电压,如果放大级继续采用NPN型共射放大电路,则集电极的工作点会被抬得更高,集电极电阻值不好设计,选小了会使放大倍数不够,选大了,则电路可能饱和,电路不能正常放大。对于这种情况,一般采用互补的管型来设计,也就是说第二级的放大电路用PNP型晶体管来设计。这样,当工作在放大状态下,NPN管的集电极电位高于基极点位,而PNP管的集电极电位低于基极电位,互相搭配后可以方便地配置前后级的工作点,保证主放大器工作于最佳的工作点上,设计出不失真的最大放大倍数。
  采用PNP型晶体管作为中间主放大级并和差分输入级链接的参考电路,其中T4为主放大器,其静态工作点UB4、UE4、UC4由P1、R7、P2决定。
  差分放大电路和放大电路采用直接耦合,其工作点相互有影响,简单估计方式如下:
  ,UC4 VEE IC4 RP2 UE4 VCC IE4 R7, UB4 UE4 Uon UE4 0.7(硅管)
  由于UB4 UC1,相互影响,具体在调试中要仔细确定。 此电路中放大级输出增益AU2
   3.输出级电路 
  输出级采用互补对称电路,提高输出动态范围,降低输出电阻。
  其中T4就是主放大管,其集电极接的D1、D2是为了克服T5、T6互补对称的交越失真。本级电路没有放大倍数。
   四、测试方法 
  用Multisim仿真设计结果,并调节电路参数以满足性能指标要求。给出所有的仿真结果。
  电路图如图1所示 uo2 Rc  uo1Rb rbe
   仿真电路图 
   图1静态工作点的测量: 
  测试得到静态工作点IEQ3,IEQ4如图2所示,符合设计要求。
   图2 静态工作点测量 
  输入输出端电压测试:
  测试差分放大器单端输入单端输出波形如图3,输入电压为VPP=4mV,输出电压为VPP=51.5mV得到差分放大器放大倍数大约为12.89倍。放大倍数符合要求。
    
   图3 低电压下波形图 主放大级输入输出波形如图4 
   图4 主放大级输入输出波形图 
  如图所示输入电压为VPP=51.5mV,输出电压为VPP=6.75V放大倍数为131.56倍。 整个电路输入输出电压测试如图
    
   图5 多级放大电路输入输出波形图 
  得到输入电压为VPP=4mV,输出电压为VPP=4.29V,放大倍数计算得到为1062倍 实验结论:
  本电路利用差动放大电路有效地抑制了零点漂移,利用PNP管放大级实现主放大电路,利用互补对称输出电路消除交越失真的影响,设计并且测试了多级放大电路,得到放大倍数为1000多倍,电路稳定工作。
  基本放大电路实验报告总结2   实验一:仪器放大器设计与仿真 
   一. 实验目的 
  1.掌握仪器放大器的设计方法
  2.理解仪器放大器对共模信号的抑制能力
  3.熟悉仪器放大器的调试方法
  4.掌握虚拟仪器库中关于测试模拟电路仪器的使用方法,如示波器、毫伏表信号发生器等虚拟仪器的使用
   二. 实验原理 
  仪器放大器是用来放大差值信号的高精度放大器,它具有很大的共模抑制比,极高的输入电阻,且其增益能在大范围内可调。仪器放大器原理图如下所示:
    
  仪器放大器由三个集成运放构成。其中,U3构成减法电路,即差值放大器,U1、U2各对其相应的信号源组成对称的同相放大器,且R1=R2,R3=R5,R4=R6。 令R1=R2=R时,则
  Vo2—Vo1=(1+2R/Rg)(Vi2—Vi1)
  U3是标准加权减法器,Vo1、Vo2是其输入信号,其相应输出电压 Vo=—(R6/R5)Vo2+R4/(R3+R4)Vo1(1+R6/R5)
  由于R3=R5=R4=R6=R,因而
  Vo=Vo1—Vo2=(1+2R/Rg)(Vi1—Vi2)
  仪器放大器的差值电压增益
  Avf=Vo/(Vi1—Vi2)=1+2R/Rg
  因此改变电阻的值可以改变仪器放大器的差值电压增益,此仪器放大器的增益是正的。
   三. 实验内容 
  1.按照上述原理图构成仪器放大器,具体指标为:
  (1)当输入信号Ui=2sinwt(mV)时,输出电压信号Uo=0.4sinwt(mV),Avf=200,f=1kHz
  (2)输入阻抗要求Ri>1MΩ
  2.用虚拟仪器库中关于测试模拟电路仪器,按设计指标进行调试。
  3.记录数据并进行整理分析
   四. 实验步骤 
  按下图连好电路,并设置函数信号发生器,输出正弦,频率为1kHz,幅度为2mV;用示波器观察波形变化
    
  其中Avf=1+2R/Rg≈200,输入的为差模信号2mV符合实验要求
   五.实验结果 
    
  如图示波器CH1、CH2、CH3分别是Vi1、Vi2、Vo, 由图可知输出Vo=0.4sinwt(V), 且和Vi1同相
   六.实验心得体会 
  从这次实验中我学会了multisim的基本操作方法,理解了仪器放大器的原理,而且通过仿真实验更加熟悉了一些常见电路元件的功能

基本放大电路实验报告总结

2. 急求三极管基本放大电路实验报告

一.实验目的
1.对晶体三极管(3DG6、9013)、场效应管(3DJ6G)进行实物识别,了解它们的命名方法和主要技术指标。
2.学习用数字万用表、模拟万用表对三极管进行测试的方法。
3.用图3-10提供的电路,对三极管的β值进行测试。
4.学习共射、共集电极(*)、共基极放大电路静态工作点的测量与调整,以及参数选取方法,研究静态工作点对放大电路动态性能的影响。
5.学习放大电路动态参数(电压放大倍数、输入电阻、输出电阻、最大不失真输出电压)的测量方法。
6.  调节CE电路相关参数,用示波器观测输出波形,对饱和失真和截止失真的情况进行研究。
7.用Multisim软件完成对共射极、共集电极、共基极放大电路性能的分析,学习放大电路静态工作点的测试及调整方法,观察测定电路参数变化对放大电路的静态工作点、电压放大倍数及输出电压波形的影响。加深对共射极、共集电极、共基极基本放大电路放大特性的理解。
    二.知识要点
    1.半导体三极管
    半导体三极管是组成放大电路的核心器件,是集成电路的组成元件,在电路中主要用于电流放大、开关控制或与其他元器件组成特殊电路等。
    半导体三极管的种类较多,按制造材料不同有硅管、锗管、砷化镓管、磷化镓管等;按极性不同有NPN型和PNP型;按工作频率不同有低频管、高频管及超高频管等;按用途不同有普通管、高频管、开关管、复合管等。其功耗大于1W的属于大功率管,小于1W的属于小功率管。
    半导体三极管的参数主要有电流放大倍数β、极间反向电流ICEO、极限参数(如最高工作电压VCEM、集电极最大工作电流ICM、最高结温TjM、集电极最大功耗PCM)以及频率特性参数等。有关三极管命名、类型以及参数等可查阅相关器件手册。
下面给出几种常用三极管的参数举例如表3-01所示:
表3-01 几种常用三极管的参数
参数	PCM(mW)	ICM(mA)	VBRCBO(V)	ICBO(μA	hFE	fT(MHz)	极性
3DG100D	100	20	40	1	4	0.01	NPN
3DG200A	100	20	15	0.1	25~270	0.01	NPN
CS9013H	400	500	25	0.5	144	150	NPN
CS9012H	600	500	25	0.5	144	150	PNP
参数	VP(V)	IDSS	gm(mA/V)	PDM(mW)	rGS(Ω)	fM	
3DJ6G	-9	3~6.5	1	100	108	30	N沟道
2.半导体三极管的识别与检测
半导体三极管的类型有NPN型和PNP型两种。可根据管子外壳标注的型号来判别是NPN型,还是PNP型。在半导体三极管型号命名中,第二部分字母A、C表示PNP型管;B、D表示NPN型管;而A、B表示锗材料;C、D表示硅材料。另外,目前市场上广泛使用的9011~9018系列高频小功率9012、9015为PNP型,其余为NPN型。半导体三极管的型号和命名方法,与半导体二极管的型号及命名方法相同,详见康华光第四版P44页附录或者参考有关手册。
    (1)三极管的电极和类型判别
    1) 直观辨识法。
    半导体三极管有基极(B)、集电极(C)和发射极(E)三个电极,如图3-11所示,常用三极管电极排列有E-B-C、
B-C-E、C-B-E、E-C-B等多种形式。
    2) 特征辨识法。如图3-01所示,有些三极管用结构特征标识来表示某一电极。如高频小功率管3DGl2、3DG6的外壳有一小凸起标识,该凸起标识旁引脚为发射极;金属封装低频大功率管3DD301、3AD6C的外壳为集电极等。
 
图3-11  三极管结构特征标识极性
3) 万用表欧姆档判别法             
如图3-12所示,选用指针式万用表欧姆档R×lkΩ档。首先判定基极b方法:用万用表黑表笔碰触某一极,再用红表笔依次碰触另外两个电极,并测得两电极间阻值。若两次测得电阻均很小(为PN结正向电阻值),则
黑表笔对应为基极且此管为NPN型;或
者两次测得电阻值均很大(为PN结反向
电阻值),但交换表笔后再用黑笔去碰触
另两极,也测量两次,若两次阻值也很小,
则原黑表笔对应为管子基极,且此管为
PNP型。注意:指针式万用表欧姆档时,
黑表笔则为正极,红表笔为负极;这与           (a)              (b)
数字式万用表不同。                           图3-12  万用表欧姆档判别法
其次,判别集电极和发射极。其基本原理是把三极管接成基本放大电路,利用测量管子的电流放大倍数值β的大小,来判定集电极和发射极。
以NPN管为例说明,如图3-12b所示,基极确定后,不管基极,用万用表两表笔分别接另两电极,用100kΩ的电阻一端接基极,电阻的另一端接万用表黑表笔,若表针偏转角度较大,则黑表笔对应为集电极,红表笔对应为发射极。也可用手捏住基极与黑表笔(但不能使两者相碰),以人体电阻代替l00kΩ电阻的作用(对于PNP型,手捏红表笔与基极)。
上面这种方法,实质上是把三极管接成了正向偏置状态,若极性正确,则集电极有较大电流。
(2)硅管、锗管的判别  根据硅材料PN结正向电阻较锗材料大的特点,可用万用表欧姆R×1kΩ档测定,若测得PN结正向阻值约为3~l0kΩ,则为硅材料管;若测得正向阻值约为50~1kΩ,则为锗材料管。或测量发射结(集电结)反向电阻值,若测得反向阻值约为500kΩ,则为硅材料管;若测得反向阻值约为100kΩ,则为锗材料管。
    3.三极管场效应管放大电路
    共射极放大电路既有电流放大作用,又有电压放大作用,故常用于小信号的放大。改变电路的静态工作点,可调节电路的电压放大倍数。而电路工作点的调整,主要是通过改变电路参数(Rb、Rc)来实现。(负载电阻RL的变化不影响电路的静态工作点,只改变电路的电压放大倍数。)该电路信号从基极输入,从集电极输出。输入电阻与相同材料的二极管正向偏置电阻相当,输出电阻较高,适用于多级放大电路的中间级。
    共集电极放大电路信号由晶体管基极输入,发射极输出。由于其电压放大倍数Av接近于l,输出电压具有随输入电压变化的特性,故又称为射极跟随器。该电路输入电阻高,输出电阻低,适用于多级放大电路的输入级、输出级,还可以作为中间阻抗变换级。
共基极放大电路信号由晶体管发射极输入,集电极输出。其电流放大倍数Ai接近于1但恒小于1,(又叫电流跟随器),电压放大倍数Av共射极放大器相同,且输入电压与输出电压同相。其输入电阻低,只有共射放大电路的l/(1+β)倍,输出电阻高,输入端与输出端之间没有密勒电容,电路频率特性好,适用于宽带放大电路。
下面以图3-13基本共射放大电路为例进行说明。
    (1)放大电路静态工作点的测量和调试
    由于电子元件性能的分散性很大,在
制作晶体三极管放大电路时,离不开测量
和调试技术。在完成设计和装配之后,还
必须测量和调试放大电路的静态工作点及
各项指标。一个优质的放大电路,一个最
终的产品,一定是理论计算与实验调试相
结合的产物。因此,除了熟悉放大电路的
理论设计外,还必须掌握必要的测量和调
试技术。
放大电路的测量和调试主要包括放大     
电路静态工作点的测量和调试、放大电路	图3-13  基本共射放大电路(固定偏置式)
各项动态指标的测量和调试、消除放大电路的干扰和自激等。在进行测试之前,务必先检查
三极管的好坏,并确定具体的β值。
1)静态工作点Q的测量
    放大电路静态工作点的测量是在不加输入信号(即VI=0)的情况下进行的。
    静态工作点的测量是指三极管直流电压VBEQ、VCEQ和电流I CQ的测量。应选用合适的直流电压表和直流毫安表,分别测量三极管直流电压VBEQ、VCEQ和I CQ。为了避免更改接线,采用电压测量法来换算电流。例如,只要测出实际的Rb、RC的阻值,即可由 ; ;(或 )
    提示:在测量各电极的电位时最好选用内阻较高的万用表,否则必须考虑到万用表内阻对被测电路的影响。
    2)静态工作点的调整
    测量静态工作点I CQ和VCEQ的目的是了解静态工作点的设置是否合适。若测出VCEQ <0.5 V,则说明三极管已进入饱和状态;如果VCE≈VCC,则说明三极管工作在截止状态。对于一个放大双极性信号(交流信号)的放大电路来说,这两种情况下的静态偏置都不能使电路正常工作,需要对静态工作点进行调整。如果是出现测量值与选定的静态工作点不一致,也需要对静态工作点进行调整。否则,放大后的信号将出现严重的非线性失真和错误。
通常,VCC 、Rc都已事先选定,当需要调整工作点时,一般都是通过改变偏置电阻Rb来实现。应当注意的是.如果偏置电阻Rb选用的是电位器,在调整静态工作点时,若不慎将电位器阻值调整过小(或过大),则会使IC过大而烧坏管子,所以应该用一只固定电阻与电位器串联使用。图3-18电路中是用Rb1和电位器Rb2串联构成Rb。
    2.放大电路的动态指标测试
放大电路的主要指标有电压放大倍数Av、输入电阻Ri、输出电阻Ro,以及最大不失真输出电压VO(max)等。在进行动态测试时,各电子仪器与被测电路的连接如图3-14所示。实验电路则如后面的图3-18所示。
 
图3-14 实验电路与各测试仪器的连接
提示:为防止干扰,各仪器的公共接地端与被测电路的公共接地端应连在一起。同时,信号源、毫伏表和示波器的信号线通常都采用屏蔽线,而直流电源VCC的正、负电源线可只需普通导线即可。
    (1)电压放大倍数Av的测量
    输入信号选用1KHz、约5 mV的正弦交流信号,用示波器观察放大电路输出电压VO的波形,在输出信号没有明显失真的情况下,用毫伏表测得VO和VI,于是可得  。
(2)最大不失真输出电压的测量
放大电路的线性工作范围与三极管的静态工作点位置有关。当I CQ偏小时,放大电路容易产生截止失真;而I CQ偏大时,则容易产生饱和失真。需要指出的是,当I CQ增大时,VO波形的饱和失真比较明显,
波形下端出现“削底”,如
图3-15a所示。而当I CQ
减小时,VO波形将出现截
止失真,如图3-15b所
示,波形上端出现“削顶”。    (a)              (b)             (c)
当放大电路的静态工作点调	   	图3-15  静态工作点对输出电压Vo波形的影响
整在三极管线性工作范围的        (a) VO易出现饱和失真  (b)VO易出现截止失真
中心位置时,若输入信号             (c) VO波形上下半周同时出现失真
VI过大,VO的波形也会出现失真,上下同时出现“削顶”和“削顶”失真,如图3-15(c)所示。此时,用毫伏表测出VO的幅度,即为放大电路的最大不失真输出电压Vo(max)。
    (3)输入电阻Ri的测量    
输入电阻的测量电路如图3-16所示。
 
图3-16 测量输入电阻的电路
放大电路的输入电阻: 
在放大电路的输入端串联一只阻值已知的电阻RS(可取510Ω),见图3-16所示,通过毫伏表分别测出RS两端对地电压,求得RS上的压降(Vs-Vi),则:  
所以有  
通过测量VS和Vi来间接地求出RS上的压降,是因为RS两端没有电路的公共接地点。若用一端接地的毫伏表测量,会引入干扰信号,以致造成测量误差。
    (4)输出电阻的测量
放大电路的输出端可看成有源二端网络。如图3-17所示。
 
图3-17 测量输出电阻的电路
用毫伏表测出不接RL时的空载电压Vo’和接负载RL后的输出电压Vo,即可间接地推算RO的大小:  。
    (5)放大电路频率特性的测量
放大电路频率特性是指放大电路的电压放大倍数Av,与输入信号频率之间的关系。Av随输入信号频率变化下降到0.707Av。时所对应的频率定义为下限频率 和上限频率 ,通频带为 。
上、下限频率可用以下方法测量:先调节输入信号Vi使Vi频率为1kHz;调节Vi幅度,使输出电压Vo幅度为1V。保持Vi幅度不变,增大信号Vi的频率,Vo幅度随着下降,当Vo下降到0.707 V时,对应的信号额率为上限频率 ;保持Vi幅度不变,降低Vi频率,同样使Vo幅度下降到0.707 V时,
对应的信号频率为下限频率 。
    (6)观察截止失真、饱和失
真两种失真现象
测量电路如图3-18所示,
在ICQ=3.0 mA,RL=∞情况下,
增大输入信号,使输出电压保
持没有失真,然后调节电位器
Rb2阻值,改变电路的静态工
作点,使电路分别产生较为明
显的截止失真与饱和失真,测
出产生失真后相应的集电极静
态电流。做好相应的实验记录。               图3-18 共射放大电路举例

 

 

 
图3-19 共射放大电路对应的三个仿真电路图

 
图3-20   共集电极放大电路举例
    三.实验内容
1.查阅手册并测试晶体三极管(3DG100D、CS9013)、场效应管(3DJ6G)的参数,记录所查和所测数据。
2.用晶体三极管3DG100D或CS9013组成如图3-21所示单管共射极放大电路,通过改变电位器R2,使得VCE为4V,测量此时VCEQ、VBEQ、Rb的值,计算放大电路的静态工作点Q对应的三个参数值。

    3.在下列两种情况下,测
量放大电路的电压放大倍数和
最大Av不失真输出电压VOMAX。
(1)RL=R4=∞(开路)②RL=R4=
10kΩ。
建议:最初使用1KHz、5mV的正
弦信号作为输入信号进行测试;
然后改变输入信号的幅值,使用
双踪显示方式同时显示VI与
VO,进行监视,尽量选择较大幅
度的正弦信号作为放大器的VI,
在保证VO波形不失真的条件下           图3-21  单管共射极放大电路
进行测量。(若VO波形失真,所测动态参数就毫无意义)。
    表3-09 静态数据记录表
实测值	实测计算值
   VCE(V)	VBE(V)	Rb(KΩ)	VCEQ(V)	IBQ(μA)	ICQ(mA)
					
    表3-10  测AV的记录表
实测值	理论估算值	实测计算值
Vi(mV)	Vo(mV)	AV	AV
			
			
4.	观察饱和失真和截止失真,并测出相应的集电极静态电流。
5.	测量放大电路的输入电阻Ri和输出电阻Ro。
*6.按照图3-10设计BJT的β测试电路,确定电路中所有元器件和输入电压的参数值,并对测试结果进行比较和误差分析。

 
图3-10 BJT的β值测试电路图
*7.测量图3-18放大电路带负载时的上限频率 和下限频率 。
*8.实验电路如图3-20 所示,要求仿真并实物实现电路,计算并实测电路的输入电阻和输出电阻。
四.思考题
    1.Rb为什么要由一个电位器和一个固定电阻串联组成?
    2.电解电容两端的静态电压方向与它的极性应该有何关系?
    3.如果仪器和实验线路不共地会出现什么情况?通过实验说明。
    五.实验报告
    1.按照实验准备的要求完成设计作业一份,并估算放大电路的性能指标。
    2.记录实验中测得的有关静态工作点和电路的Au、Vo(max)、Ri和Ro的数据。
    3.认真记录和整理测试数据,按要求填入表格并画出输入、输出对应的波形图。
    4.对测试结果进行理论分析,找出产生误差的原因。
    5.详细记录组装、调试过程中发生的故障或问题,进行故障分析,并说明排除故障的过程和方法。    
    6.写出对本次实验的心得体会,以及改进实验方法的建议。

提示:
1.组装电路时,不要弯曲三极管的三个电极,应当将它们垂直地插入面包板孔内。
    2.先分别组装好电路,经检查无误后,再打开电源开关。
    3.测试静态工作点时,应关闭信号源。   
4.本实验接点多,元器件多,组装时一定要确保接触良好,否则,会因接触不良,出现错误或造成电路故障。

3. 单管电压放大器实验报告怎么写

单管电压放大器实验报告:
1、写明实验目的和要求
2、列出实验设备(环境)及要求,也就是在实验中需要用到的实验用物以及对环境的要求,
3、设计实验步骤,也就是具体的操作步骤;
4、得出实验结果 ,就是实验最终所得的数字或者是验证性的结果;
5、进行讨论和分析,分析实验原理,为甚么会得到这样的结果以及在试验中英注意的问题

单管电压放大器实验报告怎么写