回归分析的应用和意义

2024-05-05 18:24

1. 回归分析的应用和意义

问题一:什么是回归分析,运用回归分析有什么作用  我只介绍一元线性回归的基本思想。我们作一系列的随机试验,得到n组数据:(x1,y1),(x2,y2),…,(xn,yn).如果我们研究的是确定性现象,当然这n个点是在同一直线上的。但是现在X与Y都是随机变量,即使X与Y之间真的存在线性关系,即确实有Y=aX+b的关系成立,由于随机因素的作用,一般地说,这n个点也不会在同一直线上。而X与Y之间实际上并不存在线性关系,由于随机因素的作用,这n个点在平面上也可能排成象在一条直线上那样的。回归分析,就是要解决这样的问题,即从试验得到的这样一组数据,我们是否应该相信X与Y之间存在线性关系,这当然要用到概率论的思想与方法。 
  
   问题二:什么是回归分析,运用回归分析有什么作用  回归分析,也有称曲线拟合.当在实验中获得自变量与因变量的一系列对应数据,(x1,y1),(x2,y2),(x3,y3),(xn,yn)时,要找出一个已知类型的函数,y=f(x) ,与之拟合,使得实际数据和理论曲线的离差平方和:∑[yi-f(xi)]^2(从i=1到i=n相加)为最小.这种求f(x)的方法,叫做最小二乘法。求得的函数y=f(x)常称为经验公式,在工程技术和科学研究的数据处理中广泛使用.最普遍的是直线(一次曲线)拟合,在现代质量管理上,对散布图的相关分析上也用此法.当然,以上仅介绍了回归分析的一部分简要内容,要详细了解,应读大学,或自学到这个程度.我是自学的,我想你只要坚持不懈的努力,也是会成功的. 
  
   问题三:回归分析的应用  相关分析研究的是现象之间是否相关、相关的方向和密切程度,一般不区别自变量或因变量。而回归分析则要分析现象之间相关的具体形式,确定其因果关系,并用数学模型来表现其具体关系。比如说,从相关分析中我们可以得知“质量”和“用户满意度”变量密切相关,但是这两个变量之间到底是哪个变量受哪个变量的影响,影响程度如何,则需要通过回归分析方法来确定。一般来说,回归分析是通过规定因变量和自变量来确定变量之间的因果关系,建立回归模型,并根据实测数据来求解模型的各个参数,然后评价回归模型是否能够很好的拟合实测数据;如果能够很好的拟合,则可以根据自变量作进一步预测。例如,如果要研究质量和用户满意度之间的因果关系,从实践意义上讲,产品质量会影响用户的满意情况,因此设用户满意度为因变量,记为Y;质量为自变量,记为X。根据图8-3的散点图,可以建立下面的线性关系: Y=A+BX+§式中:A和B为待定参数,A为回归直线的截距;B为回归直线的斜率,表示X变化一个单位时,Y的平均变化情况;§为依赖于用户满意度的随机误差项。对于经验回归方程: y=0.857+0.836x回归直线在y轴上的截距为0.857、斜率0.836,即质量每提高一分,用户满意度平均上升0.836分;或者说质量每提高1分对用户满意度的贡献是0.836分。上面所示的例子是简单的一个自变量的线性回归问题,在数据分析的时候,也可以将此推广到多个自变量的多元回归,具体的回归过程和意义请参考相关的统计学书籍。此外,在SPSS的结果输出里,还可以汇报R2,F检验值和T检验值。R2又称为方程的确定性系数(coefficient of determination),表示方程中变量X对Y的解释程度。R2取值在0到1之间,越接近1,表明方程中X对Y的解释能力越强。通常将R2乘以100%来表示回归方程解释Y变化的百分比。F检验是通过方差分析表输出的,通过显著性水平(significant level)检验回归方程的线性关系是否显著。一般来说,显著性水平在0.05以上,均有意义。当F检验通过时,意味着方程中至少有一个回归系数是显著的,但是并不一定所有的回归系数都是显著的,这样就需要通过T检验来验证回归系数的显著性。同样地,T检验可以通过显著性水平或查表来确定。在上面所示的例子中,各参数的意义如表8-2所示。线性回归方程检验 指标 显著性水平 意义  R2 0.89  “质量”解释了89%的“用户满意度”的变化程度 F 276.82 0.001 回归方程的线性关系显著 T 16.64 0.001 回归方程的系数显著 示例 SIM手机用户满意度与相关变量线性回归分析我们以SIM手机的用户满意度与相关变量的线性回归分析为例,来进一步说明线性回归的应用。从实践意义讲上,手机的用户满意度应该与产品的质量、价格和形象有关,因此我们以“用户满意度”为因变量,“质量”、“形象”和“价格”为自变量,作线性回归分析。利用SPSS软件的回归分析,得到回归方程如下:用户满意度=0.008×形象+0.645×质量+0.221×价格对于SIM手机来说,质量对其用户满意度的贡献比较大,质量每提高1分,用户满意度将提高0.645分;其次是价格,用户对价格的评价每提高1分,其满意度将提高0.221分;而形象对产品用户满意度的贡献相对较小,形象每提高1分,用户满意度仅提高0.008分。方程各检验指标及含义如下: 指标 显著性水平 意义  R2 0.89  “质量”和“价格”解释了89%的“用户满意度”的变化程度 F 248.53......>> 
  
   问题四:回归的回归分析的应用  相关分析研究的是现象之间是否相关、相关的方向和密切程度,一般不区别自变量或因变量。而回归分析则要分析现象之间相关的具体形式,确定其因果关系,并用数学模型来表现其具体关系。比如说,从相关分析中我们可以得知“质量”和“用户满意度”变量密切相关,但是这两个变量之间到底是哪个变量受哪个变量的影响,影响程度如何,则需要通过回归分析方法来确定。一般来说,回归分析是通过规定因变量和自变量来确定变量之间的因果关系,建立回归模型,并根据实测数据来求解模型的各个参数,然后评价回归模型是否能够很好的拟合实测数据;如果能够很好的拟合,则可以根据自变量作进一步预测。例如,如果要研究质量和用户满意度之间的因果关系,从实践意义上讲,产品质量会影响用户的满意情况,因此设用户满意度为因变量,记为Y;质量为自变量,记为X。根据图8-3的散点图,可以建立下面的线性关系:Y=A+BX+§式中:A和B为待定参数,A为回归直线的截距;B为回归直线的斜率,表示X变化一个单位时,Y的平均变化情况;§为依赖于用户满意度的随机误差项。在SPSS软件里可以很容易地实现线性回归,回归方程如下:y=0.857+0.836x回归直线在y轴上的截距为0.857、斜率0.836,即质量每提高一分,用户满意度平均上升0.836分;或者说质量每提高1分对用户满意度的贡献是0.836分。上面所示的例子是简单的一个自变量的线性回归问题,在数据分析的时候,也可以将此推广到多个自变量的多元回归,具体的回归过程和意义请参考相关的统计学书籍。此外,在SPSS的结果输出里,还可以汇报R2,F检验值和T检验值。R2又称为方程的确定性系数(coefficient of determination),表示方程中变量X对Y的解释程度。R2取值在0到1之间,越接近1,表明方程中X对Y的解释能力越强。通常将R2乘以100%来表示回归方程解释Y变化的百分比。F检验是通过方差分析表输出的,通过显著性水平(significant level)检验回归方程的线性关系是否显著。一般来说,显著性水平在0.05以下,均有意义。当F检验通过时,意味着方程中至少有一个回归系数是显著的,但是并不一定所有的回归系数都是显著的,这样就需要通过T检验来验证回归系数的显著性。同样地,T检验可以通过显著性水平或查表来确定。在上面所示的例子中,各参数的意义如表8-2所示。表8-2 线性回归方程检验 指标 值 显著性水平 意义R 0.89   “质量”解释了89%的“用户满意度”的变化程度 F 276.82 0.001 回归方程的线性关系显著 T 16.64 0.001 回归方程的系数显著 
  
   问题五:什么是回归分析?回归分析有什么用?主要解决什么问题?  回归分析,也有称曲线拟合.当在实验中获得自变量与因变量的一系列对应数据,(x1,y1),(x2,y2),(x3,y3),...(xn,yn)时,要找出一个已知类型的函数,y=f(x) ,与之拟合,使得实际数据和理论曲线的离差平方和:∑[yi-f(xi)]^2(从i=1到i=n相加)为最小.这种求f(x)的方法,叫做最小二乘法。求得的函数y=f(x)常称为经验公式,在工程技术和科学研究的数据处理中广泛使用.最普遍的是直线(一次曲线)拟合,在现代质量管理上,对散布图的相关分析上也用此法.当然,以上仅介绍了回归分析的一部分简要内容,要详细了解,应读大学,或自学到这个程度.我是自学的,我想你只要坚持不懈的努力,也是会成功的. 
  
   问题六:运用相关分析与回归分析应注意哪些问题  1、作回归分析要有实际意义,不能把毫无关联的两种现象,随意进行回归分析,忽视事物现象间的内在联系和规律;如对儿童身高与小树的生长数据进行回归分析既无道理也无用途。另外,即使两个变量间存在回归关系时,也不一定是因果关系,必须结合专业知识作出合理解释和结论。   2、直线回归分析的资料,一般要求应变量Y是来自正态总体的随机变量,自变量X可以是正态随机变量,也可以是精确测量和严密控制的值。若稍偏离要求时,一般对回归方程中参数的估计影响不大,但可能影响到标准差的估计,也会影响假设检验时P值的真实性。   3、进行回归分析时,应先绘制散点图(scatter plot)。若提示有直线趋势存在时,可作直线回归分析;若提示无明显线性趋势,则应根据散点分布类型,选择合适的曲线模型(curvilinear modal),经数据变换后,化为线性回归来解决。一般说,不满足线性条件的情形下去计算回归方程会毫无意义,最好采用非线性回归方程的方法进行分析。   4、绘制散点图后,若出现一些特大特小的离群值(异常点),则应及时复核检查,对由于测定、记录或计算机录入的错误数据,应予以修正和剔除。否则,异常点的存在会对回归方程中的系数a、b的估计产生较大影响。   5、回归直线不要外延。直线回归的适用范围一般以自变量取值范围为限,在此范围内求出的估计值称为内插(interpolation);超过自变量取值范围所计算的称为外延(extrapolation)。若无充足理由证明,超出自变量取值范围后直线回归关系仍成立时,应该避免随意外延。 
  
   问题七:回归分析与相关分析的区别和联系  相关分析与回归分析的区别 1.相关分析中涉及的变量不存在自变量和因变量的划分问题,变量之间的关系是对等的;而在回归分析中,则必须根据研究对象的性质和研究分析的目的,对变量进行自变量和因变量的划分。因此,在回归分析中,变量之间的关系是不对等的。 2.在相关分析中所有的变量都必须是随机变量;而在回归分析中,自变量是确定的,因变量才是随机的,即将自变量的给定值代入回归方程后,所得到的因变量的估计值不是唯一确定的,而会表现出一定的随机波动性。 3.相关分析主要是通过一个指标即相关系数来反映变量之间相关程度的大小,由于变量之间是对等的,因此相关系数是唯一确定的。而在回归分析中,对于互为因果的两个变量 (如人的身高与体重,商品的价格与需求量),则有可能存在多个回归方程。

回归分析的应用和意义

2. 回归分析的认识及简单运用

回归分析的认识及简单运用
回归分析(regression analysis)是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。运用十分广泛,回归分析按照涉及的自变量的多少,分为回归和多重回归分析;按照自变量的多少,可分为一元回归分析和多元回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多重线性回归分析。
定义
回归分析是应用极其广泛的数据分析方法之一。它基于观测数据建立变量间适当的依赖关系,以分析数据内在规律,并可用于预报、控制等问题。
方差齐性
线性关系
效应累加
变量无测量误差
变量服从多元正态分布
观察独立
模型完整(没有包含不该进入的变量、也没有漏掉应该进入的变量)
误差项独立且服从(0,1)正态分布。
现实数据常常不能完全符合上述假定。因此,统计学家研究出许多的回归模型来解决线性回归模型假定过程的约束。
研究一个或多个随机变量Y1 ,Y2 ,…,Yi与另一些变量X1、X2,…,Xk之间的关系的统计方法,又称多重回归分析。通常称Y1,Y2,…,Yi为因变量,X1、X2,…,Xk为自变量。回归分析是一类数学模型,特别当因变量和自变量为线性关系时,它是一种特殊的线性模型。最简单的情形是一个自变量和一个因变量,且它们大体上有线性关系,这叫一元线性回归,即模型为Y=a+bX+ε,这里X是自变量,Y是因变量,ε是随机误差,通常假定随机误差的均值为0,方差为σ^2(σ^2大于0)σ^2与X的值无关。若进一步假定随机误差遵从正态分布,就叫做正态线性模型。一般的情形,它有k个自变量和一个因变量,因变量的值可以分解为两部分:一部分是由于自变量的影响,即表示为自变量的函数,其中函数形式已知,但含一些未知参数;另一部分是由于其他未被考虑的因素和随机性的影响,即随机误差。当函数形式为未知参数的线性函数时,称线性回归分析模型;当函数形式为未知参数的非线性函数时,称为非线性回归分析模型。当自变量的个数大于1时称为多元回归,当因变量个数大于1时称为多重回归。
回归分析的主要内容为:
①从一组数据出发,确定某些变量之间的定量关系式,即建立数学模型并估计其中的未知参数。估计参数的常用方法是最小二乘法。
②对这些关系式的可信程度进行检验。
③在许多自变量共同影响着一个因变量的关系中,判断哪个(或哪些)自变量的影响是显著的,哪些自变量的影响是不显著的,将影响显著的自变量入模型中,而剔除影响不显著的变量,通常用逐步回归、向前回归和向后回归等方法。
④利用所求的关系式对某一生产过程进行预测或控制。回归分析的应用是非常广泛的,统计软件包使各种回归方法计算十分方便。
在回归分析中,把变量分为两类。一类是因变量,它们通常是实际问题中所关心的一类指标,通常用Y表示;而影响因变量取值的的另一类变量称为自变量,用X来表示。
回归分析研究的主要问题是:
(1)确定Y与X间的定量关系表达式,这种表达式称为回归方程;
(2)对求得的回归方程的可信度进行检验;
(3)判断自变量X对因变量Y有无影响;
(4)利用所求得的回归方程进行预测和控制。
回归分析可以说是统计学中内容最丰富、应用最广泛的分支。这一点几乎不带夸张。包括最简单的t检验、方差分析也都可以归到线性回归的类别。而卡方检验也完全可以用logistic回归代替。
众多回归的名称张口即来的就有一大片,线性回归、logistic回归、cox回归、poission回归、probit回归等等等等,可以一直说的你头晕。为了让大家对众多回归有一个清醒的认识,这里简单地做一下总结:
1、线性回归,这是我们学习统计学时最早接触的回归,就算其它的你都不明白,最起码你一定要知道,线性回归的因变量是连续变量,自变量可以是连续变量,也可以是分类变量。如果只有一个自变量,且只有两类,那这个回归就等同于t检验。如果只有一个自变量,且有三类或更多类,那这个回归就等同于方差分析。如果有2个自变量,一个是连续变量,一个是分类变量,那这个回归就等同于协方差分析。所以线性回归一定要认准一点,因变量一定要是连续变量。
2、logistic回归,与线性回归并成为两大回归,应用范围一点不亚于线性回归,甚至有青出于蓝之势。因为logistic回归太好用了,而且太有实际意义了。解释起来直接就可以说,如果具有某个危险因素,发病风险增加2.3倍,听起来多么地让人通俗易懂。线性回归相比之下其实际意义就弱了。logistic回归与线性回归恰好相反,因变量一定要是分类变量,不可能是连续变量。分类变量既可以是二分类,也可以是多分类,多分类中既可以是有序,也可以是无序。二分类logistic回归有时候根据研究目的又分为条件logistic回归和非条件logistic回归。条件logistic回归用于配对资料的分析,非条件logistic回归用于非配对资料的分析,也就是直接随机抽样的资料。无序多分类logistic回归有时候也成为多项logit模型,有序logistic回归有时也称为累积比数logit模型。
3、cox回归,cox回归的因变量就有些特殊,因为他的因变量必须同时有2个,一个代表状态,必须是分类变量,一个代表时间,应该是连续变量。只有同时具有这两个变量,才能用cox回归分析。cox回归主要用于生存资料的分析,生存资料至少有两个结局变量,一是死亡状态,是活着还是死亡?二是死亡时间,如果死亡,什么时间死亡?如果活着,从开始观察到结束时有多久了?所以有了这两个变量,就可以考虑用cox回归分析。
4、poisson回归,poisson回归相比就不如前三个用的广泛了。但实际上,如果你能用logistic回归,通常也可以用poission回归,poisson回归的因变量是个数,也就是观察一段时间后,发病了多少人?或者死亡了多少人?等等。其实跟logistic回归差不多,因为logistic回归的结局是是否发病,是否死亡,也需要用到发病例数、死亡例数。大家仔细想想,其实跟发病多少人,死亡多少人一个道理。只是poission回归名气不如logistic回归大,所以用的人也不如logistic回归多。但不要因此就觉得poisson回归没有用。
5、probit回归,在医学里真的是不大用,最关键的问题就是probit这个词太难理解了,通常翻译为概率单位。probit函数其实跟logistic函数十分接近,二者分析结果也十分接近。可惜的是,probit回归的实际含义真的不如logistic回归容易理解,由此导致了它的默默无名,但据说在社会学领域用的似乎更多一些。
6、负二项回归。所谓负二项指的是一种分布,其实跟poission回归、logistic回归有点类似,poission回归用于服从poission分布的资料,logistic回归用于服从二项分布的资料,负二项回归用于服从负二项分布的资料。说起这些分布,大家就不愿意听了,多么抽象的名词,我也很头疼。如果简单点理解,二项分布你可以认为就是二分类数据,poission分布你可以认为是计数资料,也就是个数,而不是像身高等可能有小数点,个数是不可能有小数点的。负二项分布呢,也是个数,只不过比poission分布更苛刻,如果你的结局是个数,而且结局可能具有聚集性,那可能就是负二项分布。简单举例,如果调查流感的影响因素,结局当然是流感的例数,如果调查的人有的在同一个家庭里,由于流感具有传染性,那么同一个家里如果一个人得流感,那其他人可能也被传染,因此也得了流感,那这就是具有聚集性,这样的数据尽管结果是个数,但由于具有聚集性,因此用poission回归不一定合适,就可以考虑用负二项回归。既然提到这个例子,用于logistic回归的数据通常也能用poission回归,就像上面案例,我们可以把结局作为二分类,每个人都有两个状态,得流感或者不得流感,这是个二分类结局,那就可以用logistic回归。但是这里的数据存在聚集性怎么办呢,幸亏logistic回归之外又有了更多的扩展,你可以用多水平logistic回归模型,也可以考虑广义估计方程。这两种方法都可以处理具有层次性或重复测量资料的二分类因变量。
7、weibull回归,有时中文音译为威布尔回归。weibull回归估计你可能就没大听说过了,其实这个名字只不过是个噱头,吓唬人而已。上一篇说过了,生存资料的分析常用的是cox回归,这种回归几乎统治了整个生存分析。但其实夹缝中还有几个方法在顽强生存着,而且其实很有生命力,只是国内大多不愿用而已。weibull回归就是其中之一。cox回归为什么受欢迎呢,因为它简单,用的时候不用考虑条件(除了等比例条件之外),大多数生存数据都可以用。而weibull回归则有条件限制,用的时候数据必须符合weibull分布。怎么,又是分布?!估计大家头又大了,是不是想直接不往下看了,还是用cox回归吧。不过我还是建议看下去。为什么呢?相信大家都知道参数检验和非参数检验,而且可能更喜欢用参数检验,如t检验,而不喜欢用非参数检验,如秩和检验。那这里的weibull回归和cox回归基本上可以说是分别对应参数检验和非参数检验。参数检验和非参数检验的优缺点我也在前面文章里通俗介绍了,如果数据符合weibull分布,那么直接套用weibull回归当然是最理想的选择,他可以给出你最合理的估计。如果数据不符合weibull分布,那如果还用weibull回归,那就套用错误,肯定结果也不会真实到哪儿去。所以说,如果你能判断出你的数据是否符合weibull分布,那当然最好的使用参数回归,也就是weibull回归。但是如果你实在没什么信心去判断数据分布,那也可以老老实实地用cox回归。cox回归可以看作是非参数的,无论数据什么分布都能用,但正因为它什么数据都能用,所以不可避免地有个缺点,每个数据用的都不是恰到好处。weibull回归就像是量体裁衣,把体形看做数据,衣服看做模型,weibull回归就是根据你的体形做衣服,做出来的肯定对你正合身,对别人就不一定合身了。cox回归呢,就像是到商场去买衣服,衣服对很多人都合适,但是对每个人都不是正合适,只能说是大致合适。至于到底是选择麻烦的方式量体裁衣,还是图简单到商场直接去买现成的,那就根据你的喜好了,也根据你对自己体形的了解程度,如果非常熟悉,当然就量体裁衣了。如果不大了解,那就直接去商场买大众化衣服吧。
8、主成分回归。主成分回归是一种合成的方法,相当于主成分分析与线性回归的合成。主要用于解决自变量之间存在高度相关的情况。这在现实中不算少见。比如你要分析的自变量中同时有血压值和血糖值,这两个指标可能有一定的相关性,如果同时放入模型,会影响模型的稳定,有时也会造成严重后果,比如结果跟实际严重不符。当然解决方法很多,最简单的就是剔除掉其中一个,但如果你实在舍不得,毕竟这是辛辛苦苦调查上来的,删了太可惜了。如果舍不得,那就可以考虑用主成分回归,相当于把这两个变量所包含的信息用一个变量来表示,这个变量我们称它叫主成分,所以就叫主成分回归。当然,用一个变量代替两个变量,肯定不可能完全包含他们的信息,能包含80%或90%就不错了。但有时候我们必须做出抉择,你是要100%的信息,但是变量非常多的模型?还是要90%的信息,但是只有1个或2个变量的模型?打个比方,你要诊断感冒,是不是必须把所有跟感冒有关的症状以及检查结果都做完?还是简单根据几个症状就大致判断呢?我想根据几个症状大致能能确定90%是感冒了。不用非得100%的信息不是吗?模型也是一样,模型是用于实际的,不是空中楼阁。既然要用于实际,那就要做到简单。对于一种疾病,如果30个指标能够100%确诊,而3个指标可以诊断80%,我想大家会选择3个指标的模型。这就是主成分回归存在的基础,用几个简单的变量把多个指标的信息综合一下,这样几个简单的主成分可能就包含了原来很多自变量的大部分信息。这就是主成分回归的原理。
9、岭回归。岭回归的名称由来我也没有查过,可能是因为它的图形有点像岭。不要纠结于名称。岭回归也是用于处理自变量之间高度相关的情形。只是跟主成分回归的具体估计方法不同。线性回归的计算用的是最小二乘估计法,当自变量之间高度相关时,最小二乘回归估计的参数估计值会不稳定,这时如果在公式里加点东西,让它变得稳定,那就解决了这一问题了。岭回归就是这个思想,把最小二乘估计里加个k,改变它的估计值,使估计结果变稳定。至于k应该多大呢?可以根据岭迹图来判断,估计这就是岭回归名称的由来。你可以选非常多的k值,可以做出一个岭迹图,看看这个图在取哪个值的时候变稳定了,那就确定k值了,然后整个参数估计不稳定的问题就解决了。
10、偏最小二乘回归。偏最小二乘回归也可以用于解决自变量之间高度相关的问题。但比主成分回归和岭回归更好的一个优点是,偏最小二乘回归可以用于例数很少的情形,甚至例数比自变量个数还少的情形。听起来有点不可思议,不是说例数最好是自变量个数的10倍以上吗?怎么可能例数比自变量还少,这还怎么计算?可惜的是,偏最小二乘回归真的就有这么令人发指的优点。所以,如果你的自变量之间高度相关、例数又特别少、而自变量又很多(这么多无奈的毛病),那就现在不用发愁了,用偏最小二乘回归就可以了。它的原理其实跟主成分回归有点像,也是提取自变量的部分信息,损失一定的精度,但保证模型更符合实际。因此这种方法不是直接用因变量和自变量分析,而是用反映因变量和自变量部分信息的新的综合变量来分析,所以它不需要例数一定比自变量多。偏最小二乘回归还有一个很大的优点,那就是可以用于多个因变量的情形,普通的线性回归都是只有一个因变量,而偏最小二乘回归可用于多个因变量和多个自变量之间的分析。因为它的原理就是同时提取多个因变量和多个自变量的信息重新组成新的变量重新分析,所以多个因变量对它来说无所谓。
看了以上的讲解,希望能对大家理解回归分析的运用有些帮助。
以上是小编为大家分享的关于回归分析的认识及简单运用的相关内容,更多信息可以关注环球青藤分享更多干货

3. 回归分析


回归分析

4. 回归分析的介绍

回归分析(regression analysis)是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。运用十分广泛,回归分析按照涉及的变量的多少,分为一元回归和多元回归分析;在线性回归中,按照因变量的多少,可分为简单回归分析和多重回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。

5. 什么是回归分析?

科普中国·科学百科:回归分析

什么是回归分析?

6. 什么是回归分析

回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。运用十分广泛,回归分析按照涉及的自变量的多少,可分为一元回归分析和多元回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。
 
回归分析是应用极其广泛的数据分析方法之一。它基于观测数据建立变量间适当的依赖关系,以分析数据内在规律,并可用于预报、控制等问题。

7. 回归分析法

回归分析法,是在研究矿坑涌水量与其影响因素存在一定相关关系后,提出的一种数理统计方法。矿坑涌水量是在各种自然和人为因素综合作用下有规律地变化着。影响矿坑涌水量变化的因素极其复杂繁多,甚至有些因素我们目前还没有发现,有些因素虽被发现但也无力调控和测定。因此,大量事实告诉我们,矿坑涌水量(称为因变量)与某些影响因素(称为自变量)的关系也存在数学中称之为相关的关系。回归分析法就是利用数学统计的方法,找出矿坑涌水量与影响因素之间的相关关系的数学表达式——回归方程,用求得的回归方程来预测矿坑涌水量。
回归分析法与水文地质比拟法的原理基本相同,都是寻求矿坑涌水量与其主要影响因素之间的关系表达式,并以这种寻找到的数学关系式来预测新的矿坑涌水量。所不同的是数学表达式的来源不同。水文地质比拟法,多数是根据经验提出,用起来方便灵活,缺点是缺乏严密性;回归分析法,是以已经有的实测数据为基础,通过数理统计的方法建立回归方程,其优点是可靠性较水文地质比拟法大一些,但计算较复杂。
应该注意的是,回归方程是一种非确定性的变量关系,严格地讲,它不允许外推。但具体工作中往往又需要外推,因此,回归方程外推的范围不宜过大。当回归方程为直线时,外推深度一般不应超过试验降深的1.5~1.75倍;当回归方程为曲线相关时,虽可适当增大外推范围,但一般也不宜超过2倍。同时,必须根据矿床具体的水文地质条件,检验外推结果是否合理。
几种常用的回归方程如下:
(一)二元直线相关
当矿坑涌水量与主要影响因素之间为直线相关关系时,其数学表达式为
Q=a+bs (4-5)
式中:Q为试验时的涌水量;S为当抽水量为Q时相对应的水位降深;a为常数;b为回归系数,它表示当S每增加1m时涌水量平均增加的水量数值。
a,b可根据试验数据利用最小二乘法求得

双层水位矿床地下水深层局部疏干方法的理论与实践

式中:  为试验时各次涌水量的算术平均值,即  ;  为试验时各次降深的算术平均值,即  ;n为试验观测次数。
根据求得的a,b系数值,便可写出回归方程。
(二)三元直线相关
如果矿坑涌水量与两个影响因素存在直线相关时,其数学表达式便为三元直线相关(比如降深S和时间t):
Q=b0+b1S+b2t (4-8)
式中:b0为常数;b1,b2分别为水量Q对自变量S和t的回归系数;S,t为当矿坑涌水量为Q时的两个因素自变量;b0,b1,b2可用最小二乘法确定;  。

双层水位矿床地下水深层局部疏干方法的理论与实践

根据求得的b0,b1,b2可以写出三元直线方程。
(三)涌水量-降深曲线法(Q-S曲线法)
涌水量-降深曲线法也称涌水量曲线法,其实质就是利用抽(放)水的试验资料,建立涌水量(Q)和降深(S)之间的关系曲线方程,根据试验阶段和未来开采阶段水文地质条件的相似性,合理地把Q-S曲线外推,来预测矿坑涌水量。
大量试验资料证明,涌水量曲线一般有4种类型(图4-1)。

图4-1 涌水量-降深曲线图

(1)直线型
Q=bs
式中: 
这种类型的曲线方程,一般表现为地下水流呈层流状态,抽水时水位降深与含水层厚度相比很小。
(2)抛物线型
S=aQ+bQ2 (4-11)

双层水位矿床地下水深层局部疏干方法的理论与实践

(3)幂函数曲线型

双层水位矿床地下水深层局部疏干方法的理论与实践

(4)对数曲线型
Q=a+blgS (4-17)
式中:

双层水位矿床地下水深层局部疏干方法的理论与实践

上述各式中a,b均为待定系数,求出a,b后便可写出涌水量曲线方程。
一般情况下,图4-1中的2号曲线代表的是抛物线型曲线,它表示强富水性含水层在抽水强烈时,地下水抽水井附近出现三维流的情况下的曲线形态;第3,4两种类型曲线一般表示含水层规模较小,补给条件比较差情况下出现的曲线类型。
涌水量曲线方程的形态不但与含水层的规模、性质以及补给径流条件有关,而且与抽水强度的大小和抽水时间长短也有关系。因此,采用Q-S曲线方程法预测矿坑涌水量时,一般要求抽(放)水试验的规模尽量大一些,常采取大口径、大降深群孔抽(放)水试验,以求尽量符合未来的开采状态,充分揭露和显示其尽量多的水文地质条件,尽量波及矿床的各种边界,从而求取最大可能符合实际条件的矿坑涌水量。

回归分析法

8. 回归分析的定义

回归分析是应用极其广泛的数据分析方法之一。它基于观测数据建立变量间适当的依赖关系,以分析数据内在规律,并可用于预报、控制等问题。方差齐性线性关系效应累加变量无测量误差变量服从多元正态分布观察独立模型完整(没有包含不该进入的变量、也没有漏掉应该进入的变量)误差项独立且服从(0,1)正态分布。现实数据常常不能完全符合上述假定。因此,统计学家研究出许多的回归模型来解决线性回归模型假定过程的约束。研究一个或多个随机变量Y1 ,Y2 ,…,Yi与另一些变量X1、X2,…,Xk之间的关系的统计方法,又称多重回归分析。通常称Y1,Y2,…,Yi为因变量,X1、X2,…,Xk为自变量。回归分析是一类数学模型,特别当因变量和自变量为线性关系时,它是一种特殊的线性模型。最简单的情形是一个自变量和一个因变量,且它们大体上有线性关系,这叫一元线性回归,即模型为Y=a+bX+ε,这里X是自变量,Y是因变量,ε是随机误差,通常假定随机误差的均值为0,方差为σ^2(σ^2大于0)σ^2与X的值无关。若进一步假定随机误差遵从正态分布,就叫做正态线性模型。一般的情形,它有k个自变量和一个因变量,因变量的值可以分解为两部分:一部分是由于自变量的影响,即表示为自变量的函数,其中函数形式已知,但含一些未知参数;另一部分是由于其他未被考虑的因素和随机性的影响,即随机误差。当函数形式为未知参数的线性函数时,称线性回归分析模型;当函数形式为未知参数的非线性函数时,称为非线性回归分析模型。当自变量的个数大于1时称为多元回归,当因变量个数大于1时称为多重回归。回归分析的主要内容为:①从一组数据出发,确定某些变量之间的定量关系式,即建立数学模型并估计其中的未知参数。估计参数的常用方法是最小二乘法。②对这些关系式的可信程度进行检验。③在许多自变量共同影响着一个因变量的关系中,判断哪个(或哪些)自变量的影响是显著的,哪些自变量的影响是不显著的,将影响显著的自变量入模型中,而剔除影响不显著的变量,通常用逐步回归、向前回归和向后回归等方法。④利用所求的关系式对某一生产过程进行预测或控制。回归分析的应用是非常广泛的,统计软件包使各种回归方法计算十分方便。在回归分析中,把变量分为两类。一类是因变量,它们通常是实际问题中所关心的一类指标,通常用Y表示;而影响因变量取值的的另一类变量称为自变量,用X来表示。回归分析研究的主要问题是:(1)确定Y与X间的定量关系表达式,这种表达式称为回归方程;(2)对求得的回归方程的可信度进行检验;(3)判断自变量X对因变量Y有无影响;(4)利用所求得的回归方程进行预测和控制。