启动电阻的作用

2024-05-12 08:46

1. 启动电阻的作用

接通电源瞬间,电路尚未起振时,给开关管基极提供一个偏流,使开关管集电极与开关变压器初级线圈流过一定量的电流,通过变压器感应,反馈线圈中产生了一个感应电压,又反馈给开关管基极,使电路进入自激振荡。

启动电阻的作用

2. 水电阻启动工作原理

        电阻分相式电机的起动绕组采用较细的导线绕制,且匝数偏少,运行绕组采用较粗的导线绕制,且匝数较多。两者比较,前者电阻大,感抗小,后者电阻小,感抗大。
        当两绕组并接在单相交流电源后,通过起动绕组的电流I2落后于电压U的相角ω2较小,而通过运行绕组的电流I1落后于电压U的相角ω1较大。
        因而把单相电流剖分为相位差ω=ω1-ω2的两相电流,虽然这两个电流不象二相电流一样相差90°,但其相角差ω,已足以产生和二相电流性质相同的旋转磁场。
        电阻分相式电机成功起动后必须断开起动绕组,起动绕组长时间工作将会过热烧毁的。
        电阻分相式电机的起动电路图:

3. 电阻的工作原理

今天,在这个视频中,我展示了如何使用Triac bt136制作自动路灯。没有中继没有电池所需组件:BT136Diac DB3(可以从旧的CFL驱动程序中获得)220K电阻LDR

电阻的工作原理

4. 开关磁阻电机工作原理?

以12/8极三相开关磁阻电机为例。图2-2表示该电机的横切面和一相电路的原理示意图,Sl、S2是电子开关,Dl、D2是二极管,Us是直流电源。它的定子和转子呈凸极形状,极数互不相等,转子由叠片构成,无绕组,定子绕组可根据需要采用串联、并联或串并联结合的形式在相应的极上得到径向磁场,转子带有位置检测器以提供转子位置信号,使定子绕组按一定的顺序通断,保持电机的连续运行。电机磁阻随着转子磁极与定子磁极的中心线对准或错开而变化,因为电感与磁阻成反比,当转子磁极在定子磁极中心线位置时,相绕组电感最大,当转子极间中心线对准定子磁极中心线时,相绕组电感最小。 
 
当定子A相磁极轴线OA与转子磁极轴线Oa不重合时,开关51、S2合上,A相绕组通电,电动机内建立起以OA为轴线的径向磁场,磁通通过定子扼、定子极、气隙、转子极、转子辘等处闭合。通过气隙的磁力线是弯曲的,此时磁路的磁导小于定、转子磁极轴线重合时的磁导,因此,转子将受到气隙中弯曲磁力线的切向磁拉力产生的转矩的作用,使转子逆时针方向转动,转子磁极的轴线Oa向定子A相磁极轴线OA趋近。当OA和Oa轴线重合时,转子已达到平衡位置,即当A相定、转子极对极时,切向磁拉力消失,转子不再转动。此时打开A相开关S1、S2,合上B相开关,即在A相断电的同时B相通电,建立以B相定子磁极为轴线的磁场,电动机内磁场沿顺时针方向转过30°,转子在磁场磁拉力的作用下继续沿着逆时针方向转过15°。依此类推,定子绕组A-B-C三相轮流通电一次,转子逆时针转动了一个转子极距δr(δr=360°/Nr),对于三相12/8极开关磁阻电机,δr=360°/8=45°,定子磁极产生的磁场轴线则顺时针移动了3×30°=90°空间角。可见,连续不断地按A-B-C-A的顺序分别给定子各相绕组通电,电动机内磁场轴线沿A-B-C-A的方向不断移动,转子沿A-C-B-A的方向逆时针旋转。如果按A-C-B-A的顺序给定子各相绕组轮流通电,则磁场沿着A-C-B-A的方向转动,转子则沿着与之相反的A-B-C-A方向顺时针旋转。

5. 电阻器的基本原理

电阻器由电阻体、骨架和引出端三部分构成(实芯电阻器的电阻体与骨架合二为一),而决定阻值的只是电阻体。对于截面均匀的电阻体,电阻值为  式中ρ为电阻材料的电阻率(欧·厘米);L为电阻体的长度(厘米);A为电阻体的截面积(平方厘米)。薄膜电阻体的厚度d很小,难于测准,且ρ又随厚度而变化,故把视为与薄膜材料有关的常数,称为膜电阻。实际上它就是正方形薄膜的阻值,故又称方阻(欧/方)。对于均匀薄膜  式中W为薄膜的宽度(厘米)。通常Rs应在一有限范围内,Rs太大会影响电阻器性能的稳定。因此圆柱形电阻体以刻槽方法,平面形电阻体用刻蚀迂回图形的方法来扩大其阻值范围,并进行阻值微调。伏安特性是用图形曲线来表示电阻端部电压和电流的关系,当电压电流成比例时(特性为直线),称为线性电阻,否则称为非线性电阻。参数与特性  表征电阻特性的主要参数有标称阻值及其允许偏差、额定功率、负荷特性、电阻温度系数等。标称阻值 用数字或色标在电阻器上标志的设计阻值。单位为欧(Ω)、千欧(kΩ)、兆欧(MΩ)、太欧(TΩ)。阻值按标准化优先数系列制造,系列数对应于允许偏差。电阻的阻值和允许偏差的标注方法有直标法、色标法和文字符号法。① 直标法将电阻的阻值和误差直接用数字和字母印在电阻上(无误差标示为允许误差 ± 20%)。也有厂家采用习惯标记法,如:3 Ω 3  Ⅰ 表示电阻值为3.3 Ω、允许误差为 ± 5 %1 K 8  表示电阻值为1.8 KΩ、允许误差为 ± 20 %5 M 1  Ⅱ 表示电阻值为5.1 MΩ、允许误差为 ± 10 %② 色标法将不同颜色的色环涂在电阻器(或电容器)上来表示电阻(电容器)的标称值及允许误差,各种颜色所对应的数值见表 B303。固定电阻器色环标志读数识别规则如图T301所示。四环电阻的识别方法  颜色  第一环数字  第二环数字  倍乘数  误差  黑  0  0  10^0  ———  棕  1  1  10^1  ———  红  2  2  10^2  ———  橙  3  3  10^3  ———  黄  4  4  10^4  ———  绿  5  5  10^5  ———  蓝  6  6  10^6  ———  紫  7  7  10^7  ———  灰  8  8  10^8  ———  白  9  9  10^9  ———  金  ———  ————  10^-1  ±5%  银  ———  ————  10^-2  ±10%  五环电阻的识别  颜色  第一环数字  第二环数字  第三环数字  倍乘数  误差  黑  0  0  0  10^0  ——  棕  1  1  1  10^1  1%  红  2  2  2  10^2  2%  橙  3  3  3  10^3  ——  黄  4  4  4  10^4  ——  绿  5  5  5  10^5  0.5%  蓝  6  6  6  10^6  0.25%  紫  7  7  7  10^7  0.1%  灰  8  8  8  10^8  ±20%  白  9  9  9  10^9  ——  金  ——  ——  ——  10^-1  ±5%  银  ——  ——  ——  10^-2  ±10%  如何使用上表:四环电阻:一环数字(十位)《红》二环数字(个位)《橙》*倍乘数《黑》 误差《金》例;红橙黑金=23*10^0=23Ω(±5%)五环电阻:一环数字(百位)《红》二环数字(十位)《蓝》三环数字(个位)《绿》*倍乘数《黑》误差例:红蓝绿黑棕=265*10^0=265Ω(±1%)允许偏差 实际阻值与标称阻值间允许的最大偏差,以百分比表示。常用的有±5%、±10%、±20%,精密的小于±1%,高精密的可达0.001%。精度由允许偏差和不可逆阻值变化二者决定。额定功率 电阻器在额定温度(最高环境温度)tR下连续工作所允许耗散的最大功率。对每种电阻器同时还规定最高工作电压,即当阻值较高时即使并未达到额定功率,也不能超过最高工作电压使用。电阻器额定功率的识别  电阻器的额定功率指电阻器在直流或交流电路中,长期连续工作所允许消耗的最大功率。有两种标志方法:2W以上的电阻,直接用数字印在电阻体上;2W以下的电阻,以自身体积大小来表示功率。在电路图上表示电阻功率时,采用如图T302符号: 负荷特性  当工作环境温度低于tR时,电阻器也不能超过其额定功率使用,当超过tR时,必须降低负荷功率。对每种电阻器都有规定的负荷特性。此外,在低气压下负荷允许相应降低。在脉冲负荷下,脉冲平均功率远低于额定功率,一般另有规定。电阻温度系数 在规定的环境温度范围内,温度每改变1℃时阻值的平均相对变化,用ppm/℃表示。 除了以上几种参数外,还有非线性(电流与所加电压特性偏离线性关系的程度)、电压系数(所加电压每改变、伏阻值的相对变化率)、电流噪声(电阻体内因电流流动所产生的噪声电势的有效值与测试电压之比,用电流噪声指数来表示)、高频特性(由于电阻体内在分布电容和分布电感的影响,使阻值随工作频率增高而下降的关系曲线、长期稳定性(电阻器在长期使用或贮存过程中受环境条件的影响阻值发生不可逆变化的过程)等技术指标。

电阻器的基本原理

6. 电阻的工作原理是什么?

在物理学中,用电阻来表示导体对电流阻碍作用的大小。导体的电阻越大,表示导体对电流的阻碍作用越大。不同的导体,电阻一般不同,电阻是导体本身的一种特性。电阻元件是对电流呈现阻碍作用的耗能元件。因为物质对电流产生的阻碍作用,所以称其该作用下的电阻物质。电阻将会导致电子流通量的变化,电阻越小,电子流通量越大,反之亦然。

电阻元件的电阻值大小一般与温度,材料,长度,还有横截面积有关,衡量电阻受温度影响大小的物理量是温度系数,其定义为温度每升高1℃时电阻值发生变化的百分数。 

电阻的主要物理特征是变电能为热能,也可说它是一个耗能元件,电流经过它就产生内能。电阻在电路中通常起分压、分流的作用。对信号来说,交流与直流信号都可以通过电阻。

热敏电阻:是一种对温度极为敏感的电阻器。 
光敏电阻
分为正温度系数和负温度系数电阻器。选用时不仅要注意其额定功率、最大工作电压、标称阻值,更要注意最高工作温度和电阻温度系数等参数,并注意阻值变化方向。  


光敏电阻:硫化镉等材质,阻值随着光线的强弱而发生变化的电阻器。分为可见光光敏电阻、红外光光敏电阻、紫外光光敏电阻。选用时先确定电路的光谱特性。 

7. 电阻器的原理是什么呢

现在你们是用的电阻器的原理是:  在导体的温度、材料和粗细相同时,导体的长度越长,导体的电阻越大。


     最常见的变阻器是滑动变阻器,它的工作原理是(通过改变接入电路中导体的有效长度来改变导体的电阻,从而控制电路中电流或电压)。  分析:  影响导体的电阻的因素有导体的长度、粗细(或横截面积)、材料、温度。  在导体的温度、材料和粗细相同时,导体的长度越长,导体的电阻越大。  在导体的温度、材料和长度相同时,导体越粗,即导体的横截面积越大,导体的电阻越小。  通过改变导体的粗细(或横截面积)、材料、温度来改变导体的电阻不容易操控,因此通常通过改变导体的长度来改变导体的电阻。

电阻器的原理是什么呢

8. 开关磁阻电机具体工作原理

开关磁阻电机是利用转子磁阻不均匀而产生转矩的电机,其结构及工作原理与传统的交、直流电动机有很大的区别,不依靠定、转子绕组电流所产生磁场的相互作用而产生转矩,而是依靠磁阻最小原理产生转矩。
即磁通总是沿着磁阻最小的路径闭合,从而产生磁拉力,进而形成磁阻性质的电磁转矩和磁力线具有力图缩短磁通路径以减小磁阻和增大磁导的本性。
开关磁阻电机的定、 转子的凸极均由普通硅钢片叠压而成,这种加工工艺可尽可能地减小电机的涡流及磁滞损耗。转子极上既没有绕组也没有永磁体,更没有换向器、滑环等, 定子极上绕有集中绕组, 径向相对的两个绕组串联构成一相, 电机整体结构简单。

开关磁阻电机使用注意事项
在开关磁阻电机,换向极、主极和连接线应该按原样设备,否则会构成反转等问题,甚至永磁减速电机不能旋转,电机不能发电,换向恶化。
在拆开换向极和主极时,开关磁阻电机应留心磁极和机架之间垫片的数量和规范,即永磁减速电机修补后,全部垫片都应放在上面,否则会构成气隙不对称、单侧磁拉力或换向不良。
以上内容参考  百度百科-开关磁阻电机