钟摆理论的介绍

2024-05-13 17:18

1. 钟摆理论的介绍

一个钟摆,一会儿朝左,一会儿朝右,周而复始,来回摆动。钟摆总是围绕着一个中心值在一定范围内作有规律的摆动,所以被冠名为钟摆理论。

钟摆理论的介绍

2. 钟摆的原理,所有

摆钟是利用摆锤的周期性振动(摆动)过程来计量时间,时间=摆的振动周期×振动次数。而摆的振动周期 T=2π(l/g)^0.5。
一般来说,摆的重量是确定的,调节摆的引用长度(l)即可调整摆的振动周期。摆的引用长度减短,时钟变快;反之则变慢。对精密摆钟,也有用附加重物法来微调摆的振动周期。摆钟放置在不同的地理位置(不同的地球纬度和海拔高度)中,摆锤的重力加速度会发生变化从而影响其振动周期。
摆钟放置在不同温度和气压的环境中,也会引起振动周期的变化。温度变化会引起摆的各部分尺寸包括摆的引用长度的变化。一般是温度升高,摆胀长而钟变慢;反之则摆缩短而钟变快。因此,精密摆钟常用不同的线胀系数的材料制成温度补偿管,以补偿温度影响。
气压的变化会引起空气阻力和空气密度的变化,从而引起振动周期的变化。因此,精密的摆钟常将摆安装在恒压的壳体中,以消除气压影响。
摆的振动幅度影响到钟的等时性。振幅愈小,振幅变化所造成的日差(见钟表日差)变化愈小,即等时性愈好,因而精密摆钟常采用长摆杆小摆幅。但是,小摆幅对外界来的震动和撞击很敏感,因而对安装环境要求很高。摆钟的走时日差一般可以达到20秒/天以内,精密摆钟达千分之几秒。
摆钟是机械钟。有的石英电子钟虽然也装有摆锤或扭摆,但只起装饰作用。

扩展资料:
其中机械摆钟中擒纵机构是一种机械能量传递的开关装置,这个开关受“计时基准的控制,以一定的频率开关钟表的主传动链,是指示 停--动 相间并以一定的平均速度转动,从而指示准确的时间。
擒纵机构的功能可以从两方面理解:擒,将主传动的运动锁定(擒住),此时,钟表的主传动链是锁定的;纵,就是以震荡系统的一部分势能,开启(放开)主传动链运动,同时从主传动链中取回一定的能量以维持震荡系统的工作。
擒纵机构是现代机械钟表的核心,最初的擒纵机构诞生于15世纪,之后逐渐进化到现在的各种样子。现今仍有数百种擒纵机构在现代钟表上使用。
参考资料来源:百度百科-摆钟

3. 钟摆理论的分类

 冲击摆是来用计算弹壳速度的实验室仪器。它的原理为:物件碰撞前后动量等恒,摆运动时能量等恒。冲击摆和普通摆相似,特别之处它的锤会和弹壳产生完全非弹性碰撞,即碰撞后两者会合为一。将弹壳射向停止的锤,使锤和弹壳合在一起摆动。设锤质量为mp,弹壳质量和初速度分别为mb和v,锤和弹壳碰撞后的速度为u。以下是弹壳速度的计算方法:(动量等恒) 1 / 2(mb + mp)u*u= (mb + mp)gh (能量等恒) 解得 。真实图片 凯特可倒摆是由英国科学家Kater在1818年提出来测量重力加速度的工具。它比单摆准确。在一根长杆上有一些重物。杆上有两个刀口,分别在重心两边。设两个刀口距离重心为h1,h2。分别以两个刀口为支点进行微角度简谐运动,考虑力距,可以计算得摆动周期T1,T2有以下关系:若调整重物的位置,使得T1 = T2,便可以很简单地透过实验计算出g的值。(详细计算)真实图片 复摆系统的一例复摆系统是混沌的。 和复摆一样,磁性摆系统是混沌的。

钟摆理论的分类

4. 钟摆的工作原理

摆钟是利用摆锤的周期性振动(摆动)过程来计量时间,时间=摆的振动周期×振动次数。而摆的振动周期 T=2π(l/g)^0.5。
一般来说,摆的重量是确定的,调节摆的引用长度(l)即可调整摆的振动周期。摆的引用长度减短,时钟变快;反之则变慢。对精密摆钟,也有用附加重物法来微调摆的振动周期。
摆钟放置在不同的地理位置(不同的地球纬度和海拔高度)中,摆锤的重力加速度会发生变化从而影响其振动周期。摆钟放置在不同温度和气压的环境中,也会引起振动周期的变化。温度变化会引起摆的各部分尺寸包括摆的引用长度的变化。
一般是温度升高,摆胀长而钟变慢;反之则摆缩短而钟变快。因此,精密摆钟常用不同的线胀系数的材料制成温度补偿管,以补偿温度影响。气压的变化会引起空气阻力和空气密度的变化,从而引起振动周期的变化。因此,精密的摆钟常将摆安装在恒压的壳体中,以消除气压影响。
摆的振动幅度影响到钟的等时性。振幅愈小,振幅变化所造成的日差(见钟表日差)变化愈小,即等时性愈好,因而精密摆钟常采用长摆杆小摆幅。但是,小摆幅对外界来的震动和撞击很敏感,因而对安装环境要求很高。摆钟的走时日差一般可以达到20秒/天以内,精密摆钟达千分之几秒。
摆钟是机械钟。有的石英电子钟虽然也装有摆锤或扭摆,但只起装饰作用。

扩展资料:

摆钟结构
摆钟的结构大体上可分为走时部分、打点部分、指针部分和打点控制部分。
1.走时部分
由头轮(即条盒轮,内装发条)、二轮、三轮(中心轮)、四轮、擒纵轮、擒纵叉、摆锤等组成。
2.打点部分
由打点条盒轮、打点二轮、打点三轮、打点四轮,打点五轮及风轮组成。
3.指针部分
由分轮、跨轮和时轮组成。结构原理与闹钟基本相同。
4.打点控制部分
摆钟每隔半小时打点一次,整点敲击的次数必须与时针指示的时刻相同,因此,它的打点必须由走时来控制。在走时和打点之间有一个具有控制打点次数的机构,它由二角凸轮、十二角凸轮、扇形齿、抬闸杠杆、开关杠杆、拨齿凸轮等组成
参考资料来源:百度百科-摆钟-工作原理

5. 摆钟的工作原理

摆钟

摆钟的工作原理

6. 钟摆原理

机械摆钟的工作原理是动能-势能的相互转换 
  发条上紧了,蓄满势能(形变势能) 
  发条放松,势能转换为动能,输出给“钟摆”,补充“钟摆”摆动时所消耗的能量.
  当“钟摆”摆动到一定的高度(重力势能最大,动能为零),下跌(势能转换为动能)使“钟摆”往回摆动到另一端.
  计时则是按其每分钟摆动多少次(60)来设定、计算的.
  原来的靠重力摆动的钟摆是靠"重力势能"和"动能"相互转化来摆动的,简单的说,如果你把钟摆拉高,由于重力影响它会往下摆,而到达最低位置后它具有一个速度,不可能直接停在那(就好象刹车不能一下子停一样),它会继续冲过最低位置,而摆至最高位置就往回摆是因为重力使它减速直到0,然后向回摆(就象往天上仍东西,它会在上升中减速到0,然后落下).如此往复,就不停的摆动了.
  按照上述,钟摆可以永远摆下去,但由于阻力存在,它会摆动逐渐减小,最后停止.所以要用发条来提供能量使其摆动.

7. 钟摆原理

摆钟主要是基于单摆原理来完成工作,即不停地进行重力势能与动能之间的相互转化。当摆钟位于最高点时,其重力势能达到最高而动能为零;随着摆钟位置的下降,重力势能转换为动能,直至到达最低点时动能最大而重力势能为零;之后又反向升高,由动能转换为重力势能,直至最高点时重力势能最高而动能为零。             
                  摆钟主要是基于单摆原理来完成工作,即不停地进行重力势能与动能之间的相互转化。当摆钟位于最高点时,其重力势能达到最高而动能为零;随着摆钟位置的下降,重力势能转换为动能,直至到达最低点时动能最大而重力势能为零;之后又反向升高,由动能转换为重力势能,直至最高点时重力势能最高而动能为零;之后摆钟下降重力势能再次转换为动能,进行上述两步的循环。由于空气阻力的影响,其最大摆动高度会逐渐降低并最终停在最低点处,因此,为了要保证摆钟的持久性和稳定性,需要为其提供能量。

钟摆原理

8. 钟摆原理

摆钟主要是基于单摆原理来完成工作,即不停地进行重力势能与动能之间的相互转化。当摆钟位于最高点时,其重力势能达到最高而动能为零;随着摆钟位置的下降,重力势能转换为动能,直至到达最低点时动能最大而重力势能为零;之后又反向升高,由动能转换为重力势能,直至最高点时重力势能最高而动能为零;之后摆钟下降重力势能再次转换为动能,进行上述两步的循环。由于空气阻力的影响,其最大摆动高度会逐渐降低并最终停在最低点处,因此,为了要保证摆钟的持久性和稳定性,需要为其提供能量。