自然常数e是怎么得来的

2024-05-12 19:01

1. 自然常数e是怎么得来的

它的来源涉及到大学高等数学里的极限问题,中学还没学到

e,作为数学常数,是自然对数函数的底数。有时称它为欧拉数(Euler number),以瑞士数学家欧拉命名;也有个较鲜见的名字纳皮尔常数,以纪念苏格兰数学家约翰·纳皮尔 (John Napier)引进对数。它就像圆周率π和虚数单位i,e是数学中最重要的常数之一。
它的其中一个定义是 
                                                                                                                                                        
                                                    


,其数值约为(小数点后100位):“e ≈ 2.71828 18284 59045 23536 02874 71352 66249 77572 47093 69995 95749 66967 62772 40766 30353 54759 45713 82178 52516 64274”。
第一次提到常数e,是约翰·纳皮尔(John Napier)于1618年出版的对数著作附录中的一张表。但它没有记录这常数,只有由它为底计算出的一张自然对数列表,通常认为是由威廉·奥特雷德(William Oughtred)制作。第一次把e看为常数的是雅各·伯努利(Jacob Bernoulli)。

自然常数e是怎么得来的

2. 自然常数e是怎么来的,谁给讲讲

神奇的自然对数底e
让我们先来看一个约公元前1700年巴比伦人提出的利息问题:以20%的年息贷钱给人,何时连本带利翻一番?问题相当于求解指数方程
$1.2^x=2$
这类复利问题我们今天每一个储蓄的人都还会遇到。如果设本金为1,则历年本利和就是这样一个等比数列:
1.2,1.22,1.23,1.24,1.25,1.27,…。
上述等比数列乃是一年复利一次的情况下得到的历年本利和,如果每半年复利一次,那么第一年的本利和为
$(1+frac{0.2}{2})^2=1.21$ 
比一年复利一次多了点;如果一个季度复利一次,那么第一年的本利和为
$(1+frac{0.2}{4})^4=1.21550625$ 
比半年复利一次又多了点;如果每月复利一次,那么第一年的本利和为
$(1+frac{0.2}{12})^12=1.21939108490523$ 
比一季度复利一次又多了点;如果每天复利一次,那么第一年的本利和为
$(1+frac{0.2}{365})^365=1.22133585825177$ 
比每月复利一次又多了点。如果每时、每分、每秒复利,第一年的本利和分别为
1.2213999696、1.2214027117、1.2214027574。
从上面的计算可以看出,年率一定,分期复利,期数增加,本利和缓慢增大;但无论期数怎么增加,本利和并不会无限制地增大,而是有一个“封顶”,永远超过不了。这个封顶就是时时刻刻都在复利时第一年的本利和,用数学语言来将就是期数趋向无穷大时第一年本利和的极限。稍懂点微积分就能算出这个极限等于
$e^0.2=1.2214027581$
它的底数是
$e=lim_{n->oo}(1+1/n)^n=2.7182818284...$

它就是自然对数的底。18世纪,瑞士大数学家欧拉首次用字母e来表示它,一直沿用至今。
我们不知道巴比伦人是否考虑过连续复利的问题,但肯定的是,他们并不知道e这个数。直到1683年,瑞士著名数学家雅各·伯努利(Jacob  Bernoulli, 1654~1705)在研究连续复利时,才意识到问题须以$(1+1/n)^n$当$n->00$时的极限来解决,但伯努利只估计出这个极限在2和3之间。欧拉则利用无穷级数
$1+1/1+1/(1*2)+1/(1*2*3))+1/(1*2*3*4)+...$
首次算出e的小数点后18位的近似值,还利用连分数证明了e是个无理数。1873年,法国著名数学家埃尔米特(C. Hermite, 1822~1901)证明了e是一个超越数。
除了复利问题,考古学也和e攀上了亲戚关系。考古学上常用的鉴定年代方法是1948年美国芝加哥大学的Willard Libby设计出来的碳-14定年法。放射性碳-14因空气中的氮原子受宇宙线轰击而形成,但它不稳定,会丢掉两个中子,衰变成碳-12。碳-14不断产生又不断衰变,结果,它在空气中的含量近似保持不变,就像一个水池,同时以同样的速度进水和出水,池内含水量不变一样。活着的动植物通过呼吸,体内自然也含有碳-14;一禽一兽、一草一木,每单位重量所含碳-14总是相同的。但是,一旦动物死亡,呼吸停止,不再从空气中吸入碳-14,而原来留在体内的碳-14则继续衰变,经过5730年( 即半衰期),碳-14的量剩下原来的一半,经过11460年,剩下原来的四分之一。这里,经过的时间和剩余的质量之间的关系是$M(t)=M_0 e^{-lambda(t-t_0)}$,其中衰变常数$lambda~~1.2*10^-4 $。如果测出考古发掘物(如兽骨、木炭、贝壳等)的碳-14含量M(t),利用上述公式即可断定其存在的年代。
与上述炭-14定年法类似,鉴定一幅画的真伪,也得和e打交道。因为任何一幅画的颜料中都含有铅-210和镭-226,因此利用两者的放射性,可以大致判别画的年代,从而让赝品“原形毕露”。
这是粘别人的,希望能帮助你

3. 有人知道自然常数e怎么来的么?


有人知道自然常数e怎么来的么?

4. e为什么叫自然常数

e有时被称为自然常数(Natural constant),是一个约等于2.71828182845904523536……的无理数。
以e为底的对数称为自然对数(Natural logarithm),数学中使用自然(Natural)这个词的还有自然数(Natural number)。这里的“自然”并不是现代人所习惯的“大自然”,而是有点儿“天然存在,非人为”的意思。
以自然作为基础,会比人为强制规定作为基础更稳定和可靠。
例如:英尺(foot)的长度就是根据人的脚长来人为规定,人的脚长差异太大,历史上英尺发生过很多次变化,不稳定,这是不自然的。而海里的长度则接近自然,海里是根据地球周长计算的,是1角分的长度,变化就极小。
无处不在的e,比如利息中的e:1元存1年,在年利率100%下,无论怎么利滚利,其余额总有一个无法突破的天花板,这个天花板就是e,
其他底数都是发明出来方便人使用,只有e为底数是被发现的,数学家发现以e为底数的对数是计算中最简、最美、最自然的形式。
把e冠以自然底数、自然常数之名,把e为底数的对数称为自然对数,是数学家们用自己的方式对e所进行的美学评价。
以上是对e的简略说明。






5. 数学当中自然常数e是么由来的啊?

自然常数e就是lim(1+1/x)^x,x->+∞或lim(1+z)^(1/z),z->0,其值约为2.71828,,是一个无限不循环数。
尤拉的自然对数底公式 
(大约等于2.71828的自然对数的底——e) 

尤拉被称为数字界的莎士比亚,他是历史上最多产的数学家,也是各领域(包含数学中理论与应用的所有分支及力学、光学、音响学、水利、天文、化学、医药等)最多著作的学者。数学史上称十八世纪为“尤拉时代”。 

尤拉出生于瑞士,31岁丧失了右眼的视力,59岁双眼失明,但他性格乐观,有惊人的记忆力及集中力,使他在13个小孩子吵闹的环境中仍能精确思考复杂问题。 

尤拉一生谦逊,从没有用自己的名字给他发现的东西命名。只有那个大约等于2.71828的自然对数的底,被他命名为e。但因他对数学广泛的贡献,因此在许多数学分支中,反而经常见到以他的名字命名的重要常数、公式和定理。 

我们现在习以为常的数学符号很多都是尤拉所发明介绍的,例如:函数符号f(x)、π、e、∑、logx、sinx、cosx以及虚数i等。高中教师常用一则自然对数的底数e笑话,帮助学生记忆一个很特别的微分公式:在一家精神病院里,有个病患整天对着别人说,“我微分你、我微分你。”也不知为什么,这些病患都有一点简单的微积分概念,总以为有一天自己会像一般多项式函数般,被微分到变成零而消失,因此对他避之不及,然而某天他却遇上了一个不为所动的人,他很意外,而这个人淡淡地对他说,“我是e的x次方。” 

这个微分公式就是:e不论对x微分几次,结果都还是e!难怪数学系学生会用e比喻坚定不移的爱情! 

相对于π是希腊文字中圆周第一个字母,e的由来较不为人熟知。有人甚至认为:尤拉取自己名字的第一个字母作为自然对数。 

而尤拉选择e的理由较为人所接受的说法有二:一为在a,b,c,d等四个常被使用的字母后面,第一个尚未被经常使用的字母就是e,所以,他很自然地选了这个符号,代表自然对数的底数;一为e是指数的第一个字母,虽然你或许会怀疑瑞士人尤拉的母语不是英文,可事实上法文、德文的指数都是它。

数学当中自然常数e是么由来的啊?

6. 自然常数e有什么用

自然常数e数学意义
  超越数主要只有自然常数和圆周率。自然常数的知名度比圆周率低很多,原因是圆周率更容易在实际生活中遇到,而自然常数在日常生活中不常用。

  自然常数一般为公式中乘方的底数和对数的底。为什么会这样,主要取决于它的来历。

  自然常数的来法比圆周率简单多了。它就是函数y=f(x)=(1+1/x)x,当x趋向无穷大时y的极限。

  同时,它也等于1/0!+1/1!+1/2!+1/3!+1/4!+1/5!+……。同时说明,0!也等于1。

  自然常数经常在公式中做对数的底。比如,对指数函数和对数函数求导时,就要使用自然常数。函数y=f(x)=ax的导数为f'(x)=ax*ln(a)。函数y=f(x)=loga(x)的导数为f'(x)=1/x*ln(10)。

  自然常数也和质数分布有关。有某个自然数a,则比它小的质数就大约有a/ln(a)个。在a较小时,结果不太正确。但是随着a的增大,则个定理会越来越精确。这个定理叫素数定理,由高斯发现。

  此外自然常数还有别的用处。比如解题。请把100分成若干份,使每份的乘积尽可能大。把这个题意分析一下,就是求两个数a和b,使ab=100,求ab的最大值。(说明,a可以为任意有理数,b必须为整数。)此时,便要用到自然常数。这需要使a尽量接近e。则b应为100/e≈36.788份,但由于份数要为整数,所以取近似值37份。这样,每份为100/37,所以ab的最大值约为9474061716781832.652。

  e是极为常用的超越数之一,它通常用作自然对数的底数。

  (1)数列或函数f(n)=(1+1/n)^n即(1+1/n)的n次方的极限值

  数列:1+1,(1+0.5)的平方,(1+0.33…)的立方,1.25^4,1.2^5,…

  函数:实际上,这里n的绝对值(即“模”)需要并只需要趋向无穷大。

  (1=)sum(1/n!),n取0至无穷大自然数。即1+1/1!+1/2!+1/3!+…

  (2)几个初级的相关公式:e^ix=cosx+i(sinx),e^x=coshx+sinhx===sum((1/n!)x^n),由此可以结合三角函数或双曲三角函数的简单性质推算出相对复杂的公式,如和角差角公式,等等,希望对朋友们学习和灵活应用它们有些帮助。

  (3)用Windows自带的计算器计算:菜单“查看/科学型“,再依次点击 1 hyp sin + ( 1 hyp cos 1 ) 或用键盘输入1hs+(1ho)=或(1hs+(1ho))也可以从这里用ctrl+C复制,再切换到计算器,按ctrl+V(菜单“编辑/粘贴”), 得到它的 32 位数值:

  e=2.71828 18284 59045 23536 02874 71352 6(第31位小数四舍五入为7)

7. 自然常数e的由来

e,作为数学常数,是自然对数函数的底数。有时称它为欧拉数,以瑞士数学家欧拉命名;也有个较鲜见的名字纳皮尔常数,以纪念苏格兰数学家约翰·纳皮尔引进对数。它就像圆周率π和虚数单位i,e是数学中最重要的常数之一。
在1690年,莱布尼茨在信中第一次提到常数e。在论文中第一次提到常数e,是约翰·纳皮尔于1618年出版的对数著作附录中的一张表。但它没有记录这常数,只有由它为底计算出的一张自然对数列表,通常认为是由威廉·奥特雷德制作。第一次把e看为常数的是雅各·伯努利。

自然常数e的由来

8. 自然常数e的由来

自然常数e的由来如下:
在18世纪初,数学大师莱昂哈德·欧拉发现了这个自然常数e。当时,欧拉试图解决由另一位数学家雅各布·伯努利在半个世纪前提出的问题。

伯努利的问题与复利有关。假设你在银行里存了一笔钱,银行每年以100%的利率兑换这笔钱。一年后,你会得到(1+100%)^1=2倍的收益。
现在假设银行每六个月结算一次利息,但只能提供利率的一半,即50%。在这种情况下,一年后的收益为(1+50%)^2=2.25倍。

根据这个规律,可以得到一条通式。如果假设n为利息复利的次数,那么利率就是其倒数1/n。一年后的收益公式为(1+1/n)^n。如果n变得无限大,那(1+1/n)^n是否也会变得无限大?这就是伯努利试图回答的问题,但直到50年后才由欧拉最终获得结果。
原来,当n趋于无穷大时,(1+1/n)^n并非也变得无穷大,而是等于2.718281828459……这是一个类似于圆周率的无限不循环小数,用字母e表示,被称为自然常数。